Supplemental Data

D-Amino Acid Substitution of Peptide-Mediated NF-κB Suppression in mdx Mice Preserves Therapeutic Benefit in Skeletal Muscle, but Causes Kidney Toxicity

Daniel P Reay,1,2 Sheldon I Bastacky,3 Kathryn E Wack,4 Donna B Stolz,4,5 Paul D Robbins,6 and Paula R Clemens1,2

Online address: http://www.molmed.org

Supplementary Figure S1. Kidney toxicity in C57 mice following treatment with 8K- NEMO binding domain (NBD) peptides. Kidneys were harvested from C57 mice treated for 4 wks with 10mg/kg of L- and D-isomers of 8K-wild type-NBD and 8K-mutant-NBD peptides. Representative whole-organ images of right and left (R/L) kidneys are shown from 2 representative mice from each treatment group. Nuclear extracts from isolated kidney cortex were assayed for levels of NF-κB activation by electrophoretic mobility shift assay (EMSA); Representative images are shown in the far right panels. wt=wild type; mut=mutant.
Supplementary Figure S2. Urinalysis from 8K-NEMO binding domain (NBD) peptide-treated mdx and C57 mice at two time points during treatment. Urine samples (7.5μL) were electrophoresed on a 10% resolving SDS-PAGE gel followed by visualization of separated proteins by Coomassie Blue R-250 staining. Representative urine samples collected after 1 wk of treatment (early urinalysis) and representative urine samples collected after 4 wks of treatment (final urinalysis) are shown for mdx mice (A) and C57 mice (B). Immunoblotting for albumin in mouse urine using an anti-mouse albumin antibody is shown in the far right lane of both (A) and (B), confirming presence of the 68kDa albumin protein in urine. Saline-treated C57 and mdx mice served as the control groups. wt= wild type; mut=mutant.